
ANVESHANAM- A NATIONAL JOURNAL OF COMPUTER SCIENCE & APPLICATIONS [VOL.1, NO.1, AUGUST 2012-JULY 2013]

9

Performance Analysis of Shared Memory
Model in a Multiprocessor Environment

Pankaj Gupta*, Garima Verma**
*Computer Science Department, BIT’s Mesra. pgupta@bitmesra.ac.in

**Computer Science Department, MTU Noida. garima.verma@globalinst.in

ABSTRACT

As we know that transition from single processor to multi-processors presents some challenges for shared memory
design and implementation these are: keeping caches coherent and maintaining memory consistency.

The problem of cache coherency occurs when any one processor tries to access a region of shared memory which has
been modiûed in another processor’s private cache, but not yet written back to main memory, which results in a read
to memory which is out of date.

Memory Consistency Model is needed for a shared memory system to define the ordering in which reads and writes
must be performed, both relative to each other in the same program and to other reads and writes by another program
on another processor. The programmer must know the memory consistency model used by the hardware in order to
ensure program correctness.

Though there are many solutions to the problem, each memory consistency model has its own advantages and
disadvantages and it is not always clear which protocol works the best for a particular system and application. Here
we presented the unifying framework by which we describe, understand and compare the sequential and total store
order memory model using MATLAB. Performance of the models here is based on the memory cycle count.

Keywords – Shared Memory, Multiprocessor, Memory Consistency Models, SC, TSO, Machine cycle.

I. INTRODUCTION

Although the performance of microprocessor is
growing at an exponential rate, but as suggested by
Moore’s law, there is always demand for large
computing capacity beyond what can readily be
provided by a single processor, hence we need a
multiprocessor system.

II. SHARED MEMORY
MULTIPROCESSOR

A popular architecture for multiprocessors is the
shared-memory architecture where all processors
share the same memory space. By sharing the same
memory, processors can communicate to coordinate
their execution. In Shared-Memory architecture
processors can coordinate their execution by basic
memory read and writes operations.

In a programmer’s point of view, a simple shared-
memory multiprocessor could be modelled as shown

in Figure 1. Here all the processors are connected to
the main memory through a switch which grants the
access to only one arbitrarily selected processor at a
time. The connected processor will then perform one
memory operation, according to the order specified
by its program, and disconnect itself from the
memory.

M emory Switch Proc essors

Single-Port

M emory

P1

P2

P3

Fig. 1 A Programmers Model of a simple
Shared Memory Multiprocessor

ANVESHANAM- A NATIONAL JOURNAL OF COMPUTER SCIENCE & APPLICATIONS [VOL.1, NO.1, AUGUST 2012-JULY 2013]

10

III. MEMORY CONSISTENCY MODELS

One of the major attributes that describe a shared-
memory multiprocessor is its memory consistency
model, which is basically a contract between
hardware and software regarding the semantics of
memory operations. The simple abstract model shown
in Figure 1 is an example of a memory consistency
model, called Sequential Consistency (SC), which
was first defined by Lamport in 1979.

The SC model is already restrictive enough that it
violates many optimizations used by most
microprocessors today. Therefore, some relaxations
have been made to the SC model to allow for better
performance. This attempt results in relaxed memory
consistency models [11, 9, 14, 12, 10, 5, and 7] which
become less intuitive, however, making them difficult
for both hardware designers and software writers to
understand.

IV. RELAXED CONSISTENCY MODELS

The basic idea behind relaxed memory models is to
enable the use of more optimizations by eliminating
some of the constraints that sequential consistency
places on the overlap and reordering of memory
operations. While sequential consistency requires the
illusion of program order and atomicity to be
maintained for all operations, relaxed models
typically allow certain memory operations to execute
out of program order or non-atomically. The degree
to which the program order and atomicity constraints
are relaxed varies among the different models.

Relaxed consistencies have broadly categorized the
various models based on how they relax the program
order constraint. The first category of models includes
the IBM-370 [3], Sun SPARC V8 total store ordering
(TSO) [2, 4], and processor consistency (PC) [12,
16] models, all of which allow a write followed by a
read to execute out of program order. The second
category includes the Sun SPARC V8 partial store
ordering (PSO) [2, 4] model, which also allows two
writes to execute out of program order. Finally, the
models in the third and last category extend this
relaxation by allowing reads to execute out of

program order with respect to their following reads
and writes. These include the weak ordering (WO)
[15], release consistency (RC) [12, 16], Digital
Equipment Alpha (DEC Alpha) [5, 6], Sun SPARC
V9 relaxed memory order (RMO) [7], and IBM
PowerPC (PowerPC) [8, 9] models.

In this Paper we are just focusing on Sequential
Consistency and Total store ordering Memory model.
Hence in the rest of the paper we will talk only about
SC and TSO memory models.

V. SEQUENTIAL CONSISTENCY

A natural way to define a memory model for
multiprocessors is to base it on the sequential
semantics of memory operations in uniprocessors. An
intuitive definition would require executions of a
parallel program on a multiprocessor to behave the
same as some interleaved execution of the parallel
processes on a uniprocessors.

Such a model was formally defined by Lamport as
sequential consistency [13] (abbreviated as SC). The
definition below assumes a multiprocessor consists
of several correctly-functioning uniprocessors,
referred to as sequential processors [Lam79] that
access a common memory. Another implicit
assumption is that a read returns the value of the last
write to the same location that is before it in the
sequential order described above.

Definition: Sequential Consistency

[A multiprocessor is sequentially consistent if the
result of any execution is the same as if the operations
of all the processors were executed in some sequential
order, and the operations of each individual processor
appear in this sequence in the order specified by its
program.]

A conceptual SC system can be modelled as shown
in Figure1 where processors are connected to the
shared memory through a switch. The following point
describes the behaviour that appears to programmers:

1. The switch connects the memory to only one
processor at a time, and the memory services only
one operation at a time, thus, making each

ANVESHANAM- A NATIONAL JOURNAL OF COMPUTER SCIENCE & APPLICATIONS [VOL.1, NO.1, AUGUST 2012-JULY 2013]

11

memory operation to appear to execute
atomically with respect to other memory
operations. The order in which memory
operations are serviced at the memory is called
the memory order. All processors observe the
same view of this memory order.

2. When granted the access to the memory, a
processor executes its memory operations in the
order specified by its program, called the
program order.

3. A read operation returns the value from the most
recent write operation (according to the memory
order) to the same memory location.

4. Switch arbitration is fair so that memory
operations from all processors are eventually
serviced.

Here we emphasize on the appearance of the system
because the actual systems need not strictly
implement what is illustrated in the conceptual model
nor do they have to maintain the stated ordering
requirements at all times, as long as any execution
result produced by these systems can be explained
as if it were produced by a hypothetical, strict SC
implementation. (An execution result refers to the
values returned by the read operations in the
execution.) In other words, a system may aggressively
perform beyond what is allowed by the memory
model provided that programmers will not notice it
doing so. For example consider Figure 2(a) where

• A strict SC implementation can produce the
shown execution result if all memory operations
from processor P1 are performed before those
from P2.

• However, this same execution result can still be
produced even if S[A] = 1 and S[B] = 2 (as well
as L [A] and L [B]) are executed out of order.

• Although such reordering would indeed violate
the second condition of the SC model above
regarding maintaining the program order, it does
not lead to an execution result that is not
producible by the strict SC implementation.

• Therefore, programmers can choose to believe
that such reordering did not occur. Hence, the
memory order that appears to programmers needs
not correspond to the actual order.

Unfortunately, determining (both statically and
dynamically) whether or when it is safe to deviate
from the strict definition is difficult. This effectively
rules out several hardware optimizations which are
otherwise applicable to sequential uniprocessors such
as overlapping accesses to different memory locations
and using write buffers to hide write latency. Compiler
optimizations affecting memory operations also
become severely restricted; complex code analysis
has to be performed to determine when such
optimizations would be safe (e.g., other processors
must not be able to observe the reordering of memory
operations, if any). Oftentimes, such analysis has to
remain conservative and produce code which is less
efficient but it is guaranteed to be correct in all
possibilities.

Finally, note that caches are not included in the SC
model since they should be transparent to software.
A cache coherence protocol governs the propagation
of each newly written value among caches such that
write operations to the same memory location are
visible to all processors in the same order. Cache
coherence is necessary but not sufficient for
Sequential Consistency because the SC model further
requires that operations to all memory locations must
appear to all processors in the same order. As an

P1 P2 P1 P2

S[A]=1 S[A]=0 S[B]=0

S[B]=2 S[A]=1 S[B]=1

S[C]=3 L[B]=0 L[A]=0

L[C]=3 L[B]=1 L[A]=1

L[A]=1

L[B]=2

(a) SC (b) Not SC

Fig. 2 Examples of execution results.

ANVESHANAM- A NATIONAL JOURNAL OF COMPUTER SCIENCE & APPLICATIONS [VOL.1, NO.1, AUGUST 2012-JULY 2013]

12

example, the execution result shown in Figure 2(b)
is cache coherent but not sequentially consistent.

• It is cache coherent because load operations for
each memory location observe the values
changing in the same order as they are written
by the store operations.

• However, there is no memory order that can
produce such a result while remaining
sequentially consistent.

• Consider, for example, L [B] = 0 performed by
processor P1. The fact that it reads value 0 means
that it must be performed after P2’s S [B] = 0 has
written the value 0 to the location, but before P2’s
S [B] = 2 overwrites that with a new value.

• Because operations from P1 (as well as P2) must
appear to happen in the program order, both S
[A]’s preceding L [B] = 0 must have already been
performed before L [B] = 0 and memory location
A will hold the most recent value, 1.

• This disallows the first L [A] performed by P2,
which happens later, to see the already
overwritten value, 0.

An execution (or the result of an execution) of a
program is sequentially consistent if there exists at
least one execution on a conceptual sequentially
consistent system that provides the same result (given
the same input and same initial state in memory).
Otherwise, the execution violates sequential
consistency.

VI. TOTAL STORE ORDERING (TSO)

The total store ordering (TSO) [2, 4] model is one of
the models proposed for the SPARC V8 architecture.
Figure 3 shows the representation for this model. The
TSO model always allows a write followed by a read
to complete out of program order. All other program
orders are maintained. If a read matches (i.e., is to
the same location as) a write in the write buffer, the
value of the last such write in the buffer that is before
it in program order is forwarded to the read.
Otherwise, the read returns the value in memory, as
in the SC.

Fig. 3 The Total Store Order (TSO)
memory model [2]

Because the value of a write in the buffer is allowed
to be forwarded to a read, the value requirement for
TSO is different from the simple memory value
requirement for SC. If we consider operations as
executing in some sequential order, the buffer-and-
memory value requirement requires the read to return
the value of either the last write to the same location
that appears before the read in this sequence or the
last write to the same location that is before the read
in program order, whichever occurs later in the
sequence. This requirement captures the effect of
forwarding the value of a write in the buffer in case
of a match.

P1 P2 P1 P2

a1: S[A]=1 a2: S[B]=1 a1: S[A]=1 a2: S[B]=1

b1: u=L[A] b2: v=L[B] b1: S[C]=1 b2: S[C]=2

c1: w=L[B] c2: x=L[A] c1: u=L[C] c2: v=L[C]

d1: w=L[B] d2: x=L[A]

(a) (b)

Fig. 4 Example program segments
for the TSO model

ANVESHANAM- A NATIONAL JOURNAL OF COMPUTER SCIENCE & APPLICATIONS [VOL.1, NO.1, AUGUST 2012-JULY 2013]

13

Figure 4 presents a couple of program segments that
illustrate the differences between the TSO and SC
models. First consider the program segment in Figure
4(a).

• Under the SC model, the outcome (u, v, w, x) =
(1, 1, 0, 0) is disallowed.

• However, this outcome is possible under TSO
because reads are allowed to bypass all previous
writes, even if they are to the same location.

• Therefore the sequence (b1, b2, c1, c2, a1, a2) is
a valid total order for TSO.

• Of course, the value requirement still requires
b1 and b2 to return the values of a1 and a2,
respectively, even though the reads occur earlier
in the sequence than the writes.

• This maintains the intuition that a read observes
all the writes issued from the same processor as
the read.

Figure 4(b) shows a slightly different program
segment. In this case, the outcome (u, v, w, x) = (1, 2,
0, 0) is not allowed under SC, but is possible under
TSO.

VII. COMPARING SC AND TSO MEMORY
MODEL

With the help of above discussion we can compare
both the SC & TSO memory model on the following
basis:

• Execution: SC executions are proper subset of
TSO executions; all SC executions are TSO
execution, while some TSO executions are SC
execution, some are not.

• Implementation: Implementations follow the
same rule, i.e. SC implementation is a proper
subset of TSO implementation.

More generally a memory consistency model Y is
strictly more relaxed (weaker) than a memory
consistency model X if all X execution are also Y
execution, but not vice-versa. If Y is more relaxed
than X, then it follows that all X implementation are

also Y implementation. It is also possible that two
memory consistency models are incomparable
because both allow execution precluded by the other.

As we know that performance for any memory model
depends on the 3P’s concept given by Sarita.V.Adve
[1], for the case of SC & TSO model the 3P works as
follows:

• Programmability: SC is the most intuitive. TSO
is close because it acts like SC for common
programming idioms.

• Performance: For simple cores TSO can offer
better performance than SC, but difference can
be made small with speculation.

• Portability: SC is widely understood, while TSO
is widely adopted.

• Hence from the above discussion we came to
know that relaxed models (TSO) are most
commonly used than the strict sequential
consistency model. Although the programming
is complex for relaxed models but the
performance of relaxed models (TSO) are better
than the sequential consistency model. We came
to this conclusion after evaluating the
performance of both the SC model and the TSO
model with the module developed using
MATLAB for performance evaluation of shared
memory model.

• We originally developed this module for
performance analysis of shared memory model
in a multiprocessor environment.

VIII. SIMULATION RESULTS

Figure 5 shows our GUI for performance analysis of
shared memory model in a multiprocessor
environment. Here we had taken two pop-up menus
one is for processor 1 and the other is for processor
2. This means that here the main memory is shared
only by two processors.

For simplicity of discussion we assumed that all the
operations defined in the each processor are single
machine cycle operation.

ANVESHANAM- A NATIONAL JOURNAL OF COMPUTER SCIENCE & APPLICATIONS [VOL.1, NO.1, AUGUST 2012-JULY 2013]

14

We considered that each processor having sufficient
private memory for their own operations. Also we
considered that both share only 16 bytes of the shared
memory.

Here we used 8 Programs for simulation and analysis
and they are numbered as 1 to 8. For each processor
there are four programs for simulation and analysis.
In our module, for processor 1 program 1 to 4 is fixed
and for processor 2 programs 4 to 8 are fixed. Also
we assumed that the each processor is same in the
architecture.

· ALU1 ALU Operations 1

· ALU2 ALU Operations 2

· COMPR Compare or decision Operation

· RDPRV Read from Private Memory

· WRPRV Write to Private Memory

· RDSHR Read from shared Memory

· WRSHR Write to Shared Memory

Fig. 5 GUI for performance analysis of Sequential Consistency Memory ModelFor simulation we
assumed that processors are having limited operations like-

ANVESHANAM- A NATIONAL JOURNAL OF COMPUTER SCIENCE & APPLICATIONS [VOL.1, NO.1, AUGUST 2012-JULY 2013]

15

Operations involved in each Test Program are
given below:

Program 1: ALU1;
RDSHR;
RDPRV;
WRSHR;

Program 2: ALU2;
WRSHR;
COMPR;
WRPRV;

Program 3: ALU2;
WRSHR;
RDSHR;
ALU2

Program 4: COMPR;
RDSHR;
WRSHR;

RDPRV;
Program 5: RDPRV;

WRSHR;
ALU1;
WRPRV;

Program 6: ALU1;
WRPRV;
RDPRV;
COMPR;

Program 7: ALU1;
COMPR;
WRSHR;
RDSHR;

Program 8: RDSHR;
WRSHR;
WRPRV;
RDPRV;

Fig. 6 GUI for performance analysis of Total Store Order Memory Model.

Selecting any pair of test program for processor 1(1,
2, 3, 4) and for processor 2 (5, 6, 7, 8) we can get the

simulation results for performance analysis of SC
Model and TSO Model based on the count of memory

ANVESHANAM- A NATIONAL JOURNAL OF COMPUTER SCIENCE & APPLICATIONS [VOL.1, NO.1, AUGUST 2012-JULY 2013]

16

cycle. If the count of memory cycles for any model
is less than the other model for the same set of
programs, it is said to have better performance.

Case 1: If we consider test program 1 for processor
1 and test program 5 for processor 2, then the
simulation results for both the memory models are
shown in the following snapshots:

The above snapshot shows the result for SC model,
where both the processors complete their operations

in 5 memory cycles by sharing the provided shared
memory.

ANVESHANAM- A NATIONAL JOURNAL OF COMPUTER SCIENCE & APPLICATIONS [VOL.1, NO.1, AUGUST 2012-JULY 2013]

17

The above snapshot shows the result for TSO model,
where both the processors complete their operations
in 4 memory cycles by sharing the provided shared
memory.

For program set 1 and 5 taken for processor 1 and
processor 2 respectively we can say that for this
scenario the TSO model is better than SC model.

For all other set of test programs the simulation results
for both the SC and TSO model is shown in the
following table:

Table 1: Simulation Results in tabular form

Test Program number
for Processor 1

Test Program number for
Processor 2

Memory Cycle Count by
simulation result for SC

Model

Memory Cycle Count by
simulation result for TSO

Model

1 5 5 4

1 6 4 4

1 7 4 4

1 8 5 4

2 5 5 5

2 6 4 4

2 7 4 4

2 8 5 5

3 5 6 5

3 6 4 4

3 7 5 4

3 8 6 5

4 5 6 4

4 6 4 4

4 7 5 5

4 8 6 4

IX. CONCLUSION

From the above table of simulation results it is clear
by the count of memory cycles that in all scenarios
the TSO memory model gives better performance
over the SC memory model.

Hence it is the most adopted memory model we have.

X. FUTURE SCOPE

There are several directions for future research which
may be classified into following categories:

1. Further research on algorithms, as I had taken
small algorithms.

2. Further research on the model, as extension of
this is possible.

3. The Model I developed can be applied to other
memory models also.

4. Further research on related concepts.

REFERENCES

[1] Sarita V. Adve. Designing memory consistency models for
shared – memory multiprocessors. PhD thesis, University
of Wisconsin, 1993.

ANVESHANAM- A NATIONAL JOURNAL OF COMPUTER SCIENCE & APPLICATIONS [VOL.1, NO.1, AUGUST 2012-JULY 2013]

18

[2] Pradeep S. Sindhu, Jean-Marc Frailong, and Michel
Cekleov. Formal specification of memory models. Technical
Report CSL-91-11, Xerox Palo Alto Research Centre,
December 1991.

[3] IBM System/370 Principles of Operation. IBM, May 1983.
Publication Number GA22-7000-9, File Number S370-01.

[4] The SPARC Architecture Manual. Sun Microsystems Inc.,
January 1991. No. 800-199-12, Version 8.

[5] Richard L. Sites, editor. Alpha Architecture Reference
Manual. Digital Press, 1992

[6] Richard L. Sites and Richard T. Witek, editors. Alpha AXP
Architecture Reference Manual. Digital Press, 1995. Second
Edition.

[7] David L. Weaver and Tom Garamond, editors. The SPARC
Architecture Manual. Prentice Hall, 1994. SPARC
International, Version 9.

[8] Cathy May, Ed Silha, Rick Simpson, and Hank Warren,
editors. The PowerPC Architecture: A Specification for a
New Family of RISC Processors. Morgan Kaufmann
Publishers, Inc., 1994.

[9] Francisco Corella, Janice M. Stone, and Charles M. Barton.
A formal specification of the PowerPC shared memory
architecture. Technical Report Computer Science Technical
Report RC 18638(81566), IBM Research Division, T.J.
Watson Research Centre, January 1993.

[10] James R. Goodman. Cache consistency and sequential
consistency. Technical Report 61, IEEE Scalable Coherent
Interface Working Group, March 1989.

[11] Kourosh Gharachorloo. MEMORY CONSISTENCY
MODELS FOR SHARED-MEMORY
MULTIPROCESSORS. PhD thesis, Stanford University,
1995.

[12] K. GHARACHORLOO, D. LENOSKI, J. LAUDON, P.
GIBBONS, A. GUPTA and J. HENNESSY, Memory
Consistency and Event Ordering in Scalable Shared-
Memory Multiprocessors, Proc. 17th Annual Intl. Symp.
on Computer Architecture, May 1990, 15-26.

[13] L. LAMPORT, How to Make a Multiprocessor
Computer That Correctly Executes Multiprocess
Programs, IEEE Trans. on Computers C-28, 9 (September
1979), 690-691.

[14] M. DUBOIS, C. SCHEURICH and F. A. BRIGGS,
Synchronization, Coherence, and Event Ordering in
Multiprocessors, IEEE Computer 21, 2 (February 1988),
9-21.

[15] C. SCHEURICH and M. DUBOIS, Correct Memory
Operation of Cache-Based Multiprocessors, Proc.
Fourteenth Annual Intl. Symp. on Computer Architecture,
Pittsburgh, PA, June 1987, 234-243.

[16] K. GHARACHORLOO, A. GUPTA and J. HENNESSY,
Two Techniques to Enhance the Performance of Memory
Consistency Models, Proc. Intl. Conf. on Parallel
Processing, 1991, I355-I364.

